Problem A. 22

Consider the matrix

$$
\mathrm{M}=\left(\begin{array}{ll}
1 & 1 \\
1 & i
\end{array}\right)
$$

(a) Is it normal?
(b) Is it diagonalizable?

Solution

Calculate the hermitian conjugate of M .

$$
\mathrm{M}^{\dagger}=\left(\begin{array}{rr}
1 & 1 \\
1 & -i
\end{array}\right)
$$

Since

$$
\mathrm{MM}^{\dagger}=\left(\begin{array}{cc}
2 & 1-i \\
1+i & 2
\end{array}\right) \neq\left(\begin{array}{cc}
2 & 1+i \\
1-i & 2
\end{array}\right)=\mathrm{M}^{\dagger} \mathrm{M}
$$

the matrix M is not normal. Consider the eigenvalue problem for M.

$$
\mathrm{Ma}=\lambda \mathrm{a}
$$

Bring λa to the left side and combine the terms.

$$
(M-\lambda I) a=0
$$

Since a $\neq 0$, the matrix in parentheses must be singular, that is,

$$
\begin{gathered}
\operatorname{det}(\mathrm{M}-\lambda \mathbf{I})=0 \\
\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & i-\lambda
\end{array}\right|=0 \\
(1-\lambda)(i-\lambda)-1=0 \\
\lambda^{2}-(1+i) \lambda+(i-1)=0 \\
\lambda=\frac{(1+i) \pm \sqrt{(1+i)^{2}-4(i-1)}}{2}=\frac{(1+i) \pm \sqrt{4-2 i}}{2}
\end{gathered}
$$

Since there are two distinct eigenvalues, there are two corresponding eigenvectors, meaning the 2×2 matrix M is normalizable.

